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Abstract – We study the thermalization and the Bose-Einstein condensation of a paraxial, spec-
trally narrow beam of quantum light propagating in a lossless bulk Kerr medium. The spatiotem-
poral evolution of the quantum optical field is ruled by a Heisenberg equation analogous to the
quantum nonlinear Schrödinger equation of dilute atomic Bose gases. Correspondingly, in the
weak-nonlinearity regime, the phase-space density evolves according to the Boltzmann equation.
Expressions for the thermalization time and for the temperature and the chemical potential of the
eventual Bose-Einstein distribution are found. After discussing experimental issues, we introduce
an optical setup allowing the evaporative cooling of a guided beam of light towards Bose-Einstein
condensation. This might serve as a novel source of coherent light.

Copyright c� EPLA, 2016

Introduction. – In the last few years, many-body
physics has embraced a novel class of systems, the so-called
quantum fluids of light [1]. In these optical systems, light
and matter combine to generate new photonlike particles
that, differently from vacuum photons, are characterized
by sizeable effective masses and mutual interactions and,
therefore, may give rise to novel states of matter.

One of the most used platforms to study the physics of
quantum fluids of light is the semiconductor planar micro-
cavity, in which the cavity photons and the quantum-well
excitons strongly couple to form mixed light-matter inter-
acting bosonic quasiparticles called exciton polaritons [2].
Numerous quantum-hydrodynamics collective phenomena
have been investigated theoretically and successfully ob-
served experimentally in such exciton-polariton fluids [1].
Nevertheless, fluids of light in cavity-based systems are in-
evitably subject to losses, which is typically detrimental
for the experimental observation of coherent quantum dy-
namical features. A more promising configuration for the
study of quantum phenomena in fluids of light consists in
the paraxial propagation of a quasimonochromatic beam
of light in a nonabsorbing bulk nonlinear medium of Kerr
type.

(a)These authors contributed equally to this work.

It is well known [3–5] that in such a cavityless, prop-
agating, geometry the complex amplitude of the classical
optical field is a slowly varying function of space and time
which satisfies a nonlinear wave equation formally identi-
cal to the Gross-Pitaevskii (GP) equation of dilute Bose-
Einstein (BE) condensates [6] after exchanging the roles
of the propagation coordinate and of the time parameter.
This classical paraxial bulk dynamics may be regarded
as the emerging mean-field description of an underlying
quantum nonlinear Schrödinger dynamics, as formalized
in full generality in a recent work by two of us [7].

In a recent experimental study [8], Sun et al. have pro-
vided the first observation of classical-wave condensation
using a beam of classical monochromatic light propagating
in a nonlinear photorefractive crystal. The mechanism un-
derlying this condensation of classical light finds its origin
in the thermalization of the classical optical field [9–19]
towards an equilibrium state whose statistics obeys the
Rayleigh-Jeans (RJ) thermal law, which corresponds to
the classical (high-temperature and/or long-wavelength)
limit of the BE distribution.

In this letter, we push this research line forward by in-
vestigating the very quantum aspects of the thermaliza-
tion dynamics of the propagating fluid of light. Making
use of the fully quantum theory developed in ref. [7], we
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discuss the possibility of measuring the Boltzmann tails of
the eventual BE distribution, which constitutes the hall-
mark of the particlelike, quantum, nature of the parax-
ial beam of light at thermal equilibrium. Inspired by
recent advances towards atom-laser devices based on in-
waveguide evaporative-cooling schemes [20–23], we finally
propose a mechanism leading to a complete BE conden-
sation in the quantum fluid of light. If realized, such
a process would offer a novel route to generate sponta-
neous optical coherence in a novel concept of coherent-
light source.

Quantum formalism. – We consider the propagation
in the positive-z direction of a paraxial, spectrally narrow
beam of light of central angular frequency ω in a bulk,
electrically neutral, nonmagnetic, nonabsorbing, nonlin-
ear medium of real-valued intensity-dependent refractive
index n0 + n1(r⊥, z) + n2|E|2. Here, n0 is the background
refractive index, n1[r⊥ = (x, y), z] describes the spatial
profile of the refractive index, n2 quantifies the strength
of the —spatially local and instantaneous— Kerr nonlin-
earity of the medium and E is the slowly varying [3–5]
envelope of the light wave’s electric field Re[Eei(β0z−ωt)] of
propagation constant β0 = n0ω/c in the increasing-z direc-
tion, where c denotes the vacuum speed of light. For sim-
plicity’s sake, we neglect light polarization and we assume
that Raman and Brillouin light-scattering processes on
phonons in the optical medium occur at a negligible rate.

Following ref. [7], it is possible to map the quantum
propagation of the beam of light in the positive-z di-
rection onto a quantum nonlinear Schrödinger evolution
of a closed system of many interacting photons in a
three-dimensional space spanned by the two-dimensional
transverse position vector r⊥ and by the physical time
parameter t. Introducing the time parameter τ = β1z
and the three-dimensional position vector r = (r⊥, ζ =
t/β1 − z), where β1 = dβ0/dω = (n0 + ωdn0/dω)/c de-
notes the inverse of the group velocity of the photons in the
medium at ω, the quantum mechanical propagation equa-
tion of the light beam may be reformulated in the Heisen-
berg form i�∂Ψ̂/∂τ = [Ψ̂, Ĥ], where the quantum field
operator Ψ̂ = [cε0n0β1/(2�ω)]1/2Ê is the second-quantized
slowly varying envelope of the electric field, normalized (ε0
is the vacuum permittivity) in a way to satisfy the usual
equal-τ Bose commutation relations [Ψ̂(r1, τ), Ψ̂†(r2, τ)] =
δ(3)(r1 − r2) and [Ψ̂(r1, τ), Ψ̂(r2, τ)] = 0, and where

Ĥ =
�

d3r

�
�2

2m⊥

∂Ψ̂†

∂r⊥
· ∂Ψ̂
∂r⊥

+
�2

2mζ

∂Ψ̂†

∂ζ

∂Ψ̂
∂ζ

+ U(r⊥, τ)Ψ̂†Ψ̂ +
g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

�
(1)

is the many-body Hamiltonian operator of the system.
In eq. (1), U(r⊥, τ) = −�ω/(cβ1)n1(r⊥, z) is the

external potential experienced by the photons, due to
the spatial variation of the refractive index, and g =
−2(�ω)2/(c2ε0 n0 β2

1)n2 is the strength of the effective

photon-photon interactions induced by the Kerr
nonlinearity.

Even more importantly, m⊥ = �β0β1 and mζ =
−�β3

1/β2 are the effective masses of the paraxial photons
in, respectively, the transverse r⊥ plane and the ζ direc-
tion. In generic media, the values of m⊥,ζ are typically
very different, as they have completely different physi-
cal origins: the former originates from paraxial diffrac-
tion in the transverse plane while the latter, inversely
proportional to the group-velocity-dispersion parameter
β2 = dβ1/dω = (2dn0/dω + ωd2n0/dω2)/c of the medium
at ω, starts playing a crucial role for nonmonochromatic
optical fields having a nontrivial time dependence. Unless
the carrier frequency ω lies in the neighborhood of some
optical resonance where dispersion is strong, m⊥ is gen-
erally much smaller than mζ ; as an example, using tabu-
lated data for fused silica [24] around 1.55 μm (1 μm), one
obtains a ratio m⊥/mζ � 7×10−3 (m⊥/mζ � −8×10−3).

As the Hamiltonian (1) is only valid within a limited
angular-frequency and wave-vector range around (ω, β0),
one has to ensure that photon-photon scattering induces
no sizeable photon population outside this paraxial re-
gion. Thanks to the conservation of the energy (1), a
necessary and —unless the chromatic dispersion has an
unusually complex shape— sufficient condition is that the
two masses m⊥,ζ have the same sign. The robustness of
a coherent photon wave against modulational instabilities
imposes further conditions that the longitudinal mass be
positive, mζ > 0, and the photon-photon interactions be
repulsive, g > 0; by definition, this amounts to assum-
ing that the dielectric is characterized by an anomalous
group-velocity dispersion, β2 < 0, and a self-defocusing
Kerr nonlinearity, n2 < 0 [7].

Thermalization time. – In this section, we pro-
vide an analytical estimate of the time τth —that is, of
the propagation distance zth = τth/β1 along the Kerr
medium— that is necessary for the isolated quantum fluid
of light described by the Hamiltonian (1) to thermal-
ize. It is worth stressing that the thermalization pro-
cess is here assumed to occur via photon-photon colli-
sions within the fluid only, and not to involve any thermal
equilibration with the underlying optical medium, e.g., by
photon-phonon scattering or repeated absorption-emission
cycles as it was instead the case in the experiment of
refs. [16,17].

Assuming for the sake of simplicity that the dielectric is
spatially homogeneous, n1(r⊥, z) = 0, i.e., U(r⊥, τ) = 0 in
eq. (1), and that the total interaction energy is small with
respect to the total kinetic one in the eventual thermal-
equilibrium state, the latter has to be characterized by an
occupation number in the plane-wave state of wave vector
k = [k⊥ = (kx, ky), kζ ] and energy Ek = �2 k2

⊥/(2m⊥) +
�2k2

ζ/(2mζ) of the BE form

NBE(Ek, T, μ) =
�

exp
�

Ek − μ

kBT

�
− 1

�−1

(2)
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(kB is the Boltzmann constant), where T and μ are, re-
spectively, the temperature and the chemical potential of
the thermalized quantum fluid of light. As we have as-
sumed there is no thermal contact with the underlying
optical medium, T is not related to the temperature of
the latter as in refs. [16,17], and both T and μ are fully
determined as functions of the energy and number densi-
ties of the photon fluid entering the medium, as detailed
in the next section.

A simple model —based on the quantum nonlinear
Schrödinger formalism (1)— to investigate the relaxation
dynamics of the initial state of the photon fluid, at τ = 0
(i.e., z = 0), towards thermal equilibrium, at τ � τth
(i.e., z � zth), is provided by the homogeneous (as
U(r⊥, τ) = 0) Boltzmann kinetic equation [25]

∂Nk

∂τ
=

2g2

�

�
d3k2

(2π)3
d3k3

(2π)3
d3k4

(2π)3

× (2π)3δ(3)(k + k2 − k3 − k4)
× 2πδ(Ek + Ek2 − Ek3 − Ek4)
× [(Nk + 1)(Nk2 + 1)Nk3Nk4

− NkNk2(Nk3 + 1)(Nk4 + 1)] (3)

for the uniform phase-space density Nk = Nk(τ) of the
paraxial photons occupying the plane-wave state of wave
vector k and energy Ek at the propagation time τ . At long
times, i.e., when τ � τth, the solution Nk of eq. (3) ap-
proaches the stationary BE distribution (2). Equation (3)
is valid i) in the absence of condensate and ii) in the weak-
interaction regime. The constraint i) is satisfied as long as
one considers energies and densities yielding noncondensed
equilibrium states; otherwise, one has to include the co-
herent dynamics of the condensate’s order parameter in
eq. (3) [25]. The condition ii) may be checked a posteriori
by requiring that, in the eventual thermal state, the total
interaction energy is small compared to the total kinetic
energy, as already supposed in the second paragraph of
the present section.

To estimate the effective relaxation time τth towards
thermal equilibrium, we are going to mutuate well-known
results from the theory of weakly interacting atomic Bose
gases. A numerical study [26] demonstrated that the ther-
malization time τth of weakly interacting bosonic atoms
not too far from thermal equilibrium is typically of the
order of 3/γ, where γ denotes the average collision rate.
This means that about three collisions per particle are
sufficient to make the system thermalize. This collision
rate may be expressed as [6] γ = ρ�v�σ�, where ρ� denotes
the mean number density of the gas, v� is the average
norm of the velocity of ideal classical bosons at temper-
ature T and σ� is the low-energy boson-boson-scattering
cross-section. This expression for γ holds in the case of an
isotropic three-dimensional system. In the present optical
case, as highlighted in the previous section, the system is
characterized by an anisotropic mass tensor. As a result,
the above-given formula for γ cannot be applied directly

to estimate the time for the quantum fluid of light to relax
towards thermal equilibrium.

In order to be able to safely use it, one has to make
the kinetic contribution to the Hamiltonian (1) isotropic
with a common mass m in all the x, y, ζ directions. To
do so, we introduce the mass parameter m = (m2

⊥mζ)1/3

—that corresponds to the geometric mean of the paraxial-
photon effective masses in the transverse x, y and lon-
gitudinal ζ directions— and the rescaled position vector
r� = [r�

⊥ = (m�
⊥/m)1/2r⊥, ζ � = (mζ/m)1/2ζ]. As an in-

versed rescaling holds in momentum space, one readily
verifies that such a transformation preserves the spatial
as well as the phase-space densities. In the isotropic r�

space, we are then allowed to use the estimate τth ∼ 3/γ =
3/(ρ�v�σ�) for the thermalization time in terms of the mean
number density ρ� = ρ, the Boltzmann-averaged velocity
v� = �|k�|/m = [8kBT/(πm)]1/2 and the scattering cross-
section σ� = 8πa�2, where a� = mg�/(4π�2) is the s-wave
scattering length written as a function of the two-body
interaction parameter g� in the isotropic r� space [6]. As
our coordinate change preserves both the spatial and the
phase-space densities, it is immediate to check that g� is
equal to the original photon-photon coupling constant g
in the anisotropic r space, g� = g.

Combining the results of the previous paragraph, one
eventually gets an explicit formula for the thermalization
time τth,

τth ∼ 3
�

ρ

�
8kBT

π(m2
⊥mζ)1/3

�1/2

8π

� (m2
⊥m2

ζ)
1/3g

4π�2

�2�−1

, (4)

that corresponds to the usual expression of the thermaliza-
tion time of a three-dimensional weakly interacting atomic
Bose gas, with a mass (m2

⊥mζ)1/3 given by the geometric
average of the masses in the transverse x, y and longitu-
dinal ζ directions.

Temperature and chemical potential at thermal
equilibrium. – As the kinetic-energy density Ekin =�

d3k/(2π)3NkEk and the photon number density ρ =�
d3k/(2π)3Nk are quantities conserved during the evolu-

tion of the quantum fluid of light described by eq. (3), the
temperature T and the chemical potential μ characterizing
the thermal-equilibrium, at τ � τth, BE distribution (2)
may be fixed by the initial, at τ = 0, values of Ekin and ρ:
Ekin(τ � τth) = Ekin(τ = 0) and ρ(τ � τth) = ρ(τ = 0),
where the left-hand sides depend on T and μ and the right-
hand sides are functions of the parameters of the incoming
electromagnetic field.

In the final equilibrium state (τ � τth, i.e., z � zth), us-
ing eq. (2), one readily gets Ekin = 3

2kB Tg5/2(f)/(λ2
⊥λζ)

and ρ = g3/2(f)/(λ2
⊥λζ), where f = exp[μ/(kBT )] is the

fugacity and gν(f) = Γ−1(ν)
� ∞
0 du uν−1/(f−1eu − 1)

refers to the Bose integral, with Γ(ν) the Euler gamma
function. These equations are similar to the well-known
results of the ideal Bose gas, with the difference that, in
the present optical case, there are two different thermal
de Broglie wavelengths λ⊥,ζ = [2π�2/(m⊥,ζkBT )]1/2 due
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to the anisotropy of the kinetic energy in eq. (1). By
means of the equation for Ekin, one finds that Eint/Ekin =
1
3gρ/(kBT )g3/2(f)/g5/2(f), where Eint = gρ2/2 is the
mean-field interaction-energy density [6] of the fluid of
light at equilibrium. Thus, as the Bose integrals g3/2(f)
and g5/2(f) are of the same order [1 � g3/2(f)/g5/2(f) �
1.94(7) for 0 � f � 1], the weak-interaction condi-
tion Eint � Ekin required for eq. (3) to be valid reads
gρ � kBT , which may be reexpressed in terms of the
s-wave scattering length a� in the isotropic r� space as
ρa�3 � (ρλ2

⊥λζ)−2. Note that this constraint directly im-
plies the usual diluteness condition ρa�3 � 1 when one
enters the quantum-degeneracy regime, ρλ2

⊥λζ � 1.
We assume that the initial fluid of light (τ = 0), i.e.,

the incident beam of light (z = 0), is characterized by the
following Gaussian distribution in real space:

�Ψ̂†(r, 0)Ψ̂(0, 0)� = ρ0e−r2
⊥/(2�2⊥)e−ζ2/(2�2ζ), (5)

with finite correlation lengths �⊥ and �ζ in the trans-
verse r⊥ plane and the longitudinal ζ direction, respec-
tively. In an actual experiment, the input density ρ0 of
the quantum fluid of light is tuned by varying the in-
tensity I = �ωρ0/β1 of the incoming light beam, the
transverse correlation length �⊥ may be tuned by pro-
cessing the input beam through spatial light modula-
tors [8] and the longitudinal correlation length �ζ may
in principle be varied by modifying the coherence time
β1�ζ of the incident beam. Note that �⊥ must be larger
than the wavelength 2π/β0 of the carrier wave to ensure
the paraxiality of the beam of light in the medium and
1/(β1�ζ) must be smaller than the frequency range within
which the quadratic approximation of the dispersion rela-
tion of the medium is valid. Fourier transforming eq. (5)
yields the expression of the initial occupation number
Nk(τ = 0) = (2π)3/2ρ0�

2
⊥�ζe−�2⊥k2

⊥/2e−�2ζk2
ζ/2 at k. From

this, one obtains, at τ = 0, Ekin = [�2
⊥�−2

⊥ /m⊥ +
�2�−2

ζ /(2mζ)]ρ0 and ρ = ρ0.
Making use of the conservation laws Ekin(τ � τth) =

Ekin(τ = 0) and ρ(τ � τth) = ρ(τ = 0), one eventually
gets the following 2-by-2 system:

3
2
kBT

g5/2(f)
g3/2(f)

=
�2�−2

⊥
m⊥

+
�2�−2

ζ

2mζ
,

g3/2(f)
λ2

⊥λζ
= ρ0, (6)

the resolution of which makes it possible to obtain T and
μ in the final thermal-equilibrium state in terms of ρ0, �⊥,
�ζ , m⊥ and mζ . Introducing the effective temperatures
T⊥,ζ = 2π�2/(kBm⊥,ζ�

2
⊥,ζ), the first of eqs. (6) may be

rewritten as 6πg5/2(f)/g3/2(f)T = 2T⊥ +Tζ, which shows
that the transverse and longitudinal modes, initially dis-
tributed at different temperatures T⊥ �= Tζ , eventually
equilibrate at the same temperature T .

Experimental considerations. – Reminding the def-
inition of the spatial coordinate ζ, the third component
of the paraxial-photon wave vector k may be expressed

as [7,27] kζ = −β1Δω, where Δω is the detuning from
the angular frequency ω of the pump. As a result, the
measurement of the BE distribution (2) as a function of
k = (k⊥, −β1Δω) requires a good angular resolution to
isolate the light deflected with a transverse wave vector k⊥
as well as a good spectral resolution to isolate the angular-
frequency component of the transmitted light at ω ± Δω.

On the other hand, to have access to the large-
momentum, Boltzmann, tails of the BE distribution —and
so, in turn, to the whole BE distribution as a function
of k— at the exit face of the nonlinear dielectric where
the fluid of light is imaged, some conditions have to be
satisfied.

The inverse of the de Broglie wavelengths λ⊥ and λζ

being the natural scales of variation of NBE(Ek, T, μ) as a
function of k⊥ and kζ , a first condition for detecting the
whole BE distribution in the transmitted beam of light
is that λ⊥ and λζ must verify the constraints satisfied,
respectively, by �⊥ and �ζ (see the third paragraph of the
previous section).

A second, perhaps more challenging, condition concerns
the length of the bulk nonlinear medium, which has to be
at least of the order of the distance zth = τth/β1 necessary
for the quantum fluid of light to fully relax towards ther-
mal equilibrium. Making use of the analytical result (4)
and of the first of eqs. (6) with the reasonable estimate
g5/2(f) ∼ g3/2(f) for 0 � f � 1, one finds that zth must
behave at a given carrier wave at (ω, β0 = n0ω/c) as

zth =
K

|n2|2I

� |β2|
�−2
⊥ + β0|β2|/(2β2

1)�−2
ζ

�1/2

, (7)

where K depends on �, c, ε0, kB and on ω, n0, β0. As
a most important contribution, it is immediate to see
that the stronger the Kerr nonlinearity is, the shorter
the thermalization distance zth is. Plugging explicit val-
ues into (7), we estimate for a light beam of 1.55 μm
wavelength, 1 W/μm2 intensity and initial β0�⊥,ζ = 10 co-
herence lengths propagating in bulk silica [2|n2|/(cε0n0) ∼
10−20 m2/W] an unreasonably long zth ∼ 1013 m, i.e., of
the order of the estimated radius of the solar system.

While an experiment using such standard bulk nonlin-
ear media looks clearly unfeasable, very promising alter-
natives are offered by resonant media where photons are
strongly mixed with matter excitations. In this way, very
strong effective photon-photon interactions may be ob-
tained, e.g., for polaritons in bulk semiconducting materi-
als showing narrow exciton lines such as GaAs or ZnSe [1].
This effect can be further reinforced by many orders of
magnitude if the chosen material excitation involves spa-
tially wide (even almost micron-sized) Rydberg states,
either in optically dressed atomic gases in the so-called
Rydberg-EIT regime [28] or in highest-quality solid-state
Cu2O samples [29]. A further advantage of resonant media
is the wide tunability of the optical parameters simply by
changing the carrier frequency ω, which is of a great utility
to ensure the dynamical stability of the photon fluid.
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Discussion of a recent experiment. – In ref. [8],
Sun et al. reported having experimentally observed the
relaxation of a classical, i.e., not quantum, fluid of inter-
acting photons towards a thermal-equilibrium state. A
beam of classical monochromatic light, initially prepared
in a nonthermal state via a suitable tayloring of the in-
cident phase profile, was made to propagate in a pho-
torefractive crystal whose optical nonlinearity was strong
enough to make the transverse angular distribution of the
beam of light fastly evolve towards a RJ-type, i.e., clas-
sical, thermal law. For small enough initial kinetic ener-
gies, a marked peak around k⊥ = 0 was observed in the
transverse-momentum-k⊥ distribution, which was inter-
preted as a signature of the occurrence of a kinetic con-
densation of classical waves.

In order to fully understand the analogies and the dif-
ferences with our quantum study, we can start by noting
that a key conceptual assumption of the experiment [8]
is that the light beam remains perfectly monochromatic
all along its propagation across the nonlinear crystal. Un-
der a mean-field approximation and provided no sponta-
neous temporal modulations such as self-pulsing [7] occur,
monochromaticity at all distances is a trivial consequence
of the classical GP form of the nonlinear Schrödinger field
equation corresponding to the quantum Hamiltonian (1).

On the other hand, monochromaticity corresponds
within the framework of our quantum theory to hav-
ing at all propagation times τ a factorized momentum
distribution Nk(τ) = Nk⊥(τ)Nkζ

, where the transverse-
momentum distribution Nk⊥(τ) evolves with τ while the
longitudinal one Nkζ

remains constant and proportional to
the Dirac function δ(kζ) at all τ ’s. Monochromaticity at
all τ ’s then requires that no scattering process can change
the kζ ’s of the colliding paraxial photons.

Most remarkably, the specific form of the optical
nonlinearity of the photorefractive crystal used in the
experiment [8] automatically serves this purpose, as its
slow response involves the time-t average of the opti-
cal intensity and —in many-body terms— corresponds to
infinite-range interactions along the ζ axis. As a result, all
processes that would generate frequencies different from
the incident one are suppressed. Keeping in mind that the
population is sharply peaked on the only occupied states
with kζ = 0, it is then straightforward to see that the
kinetics will eventually relax to the classical RJ distribu-
tion NRJ(Ek, T, μ) = kBT/(Ek −μ) rather than to the BE
one (2): because of the δ-shaped factor Nkζ

in the Nk’s,
all the quantum “+1” terms in the Boltzmann eq. (3) are
in fact irrelevant, so that the quantum kinetics reduces to
a classical one.

The situation is of course completely different if a lo-
cal and instantaneous nonlinearity is used in an experi-
ment. Within our theory [7], this corresponds to a local
interaction in the three-dimensional x, y, ζ space. As a
result, wave-mixing processes can mix all the three compo-
nents of the momentum, therefore allowing for a full three-
dimensional thermalization of the photon gas in both its

transverse-momentum-k⊥ distribution and its physical-
frequency-Δω distribution, where Δω = −kζ/β1 is mea-
sured from the carrier wave at ω. Given the quantum
nature of our model, the final result of this thermalization
process will be a BE distribution of the form (2), which
automatically solves all the ultraviolet black-body catas-
trophes that infest classical theories such as the one used
in ref. [8]. As a final point, it is worth highlighting that
thermalization to a quantum distribution is based on the
quantum “+1” terms in the Boltzmann equation and thus
does not benefit from the large Bose stimulation factor in-
volved in the thermalization of classical waves. Together
with the typically weaker Kerr optical nonlinearity of fast
media, this explains why our prediction for zth is dramat-
ically longer than the experimental one of ref. [8].

Evaporative cooling and BE condensation of a
beam of light. – An interesting consequence of the
above-investigated thermalization process appears when
the quantum fluid of light enters the BE-condensed phase.
From the theory of the ideal Bose gas [6], the critical line
for BE condensation in the (ρ0, T ) plane may be obtained
by imposing f = 1 in the second of the thermal-state
equations (6), which yields the usual formula for the BE-
condensation critical temperature,

Tc =
2π�2

kB(m2
⊥mζ)1/3

�
ρ0

ζ(3/2)

�2/3

, (8)

in terms of the Riemann zeta function at 3/2, ζ(3/2) =
g3/2(1) = 2.61(2), and the before-introduced geometric
mean m = (m2

⊥mζ)1/3 of the paraxial-photon effective
masses. To realize a BE condensate of light in a bulk
geometry, the experimentalist has to choose the rescaled
intensity ρ0 and the correlation lengths �⊥ and �ζ of the
incident beam in such a way that the temperature T in
the thermal state, solution of eqs. (6), is smaller than Tc
given by eq. (8).

Following the theoretical and experimental investiga-
tions [20–23] of the evaporative cooling of an atomic beam
propagating in a magnetic trap, a promising way to facili-
tate BE condensation in the quantum fluid of light consists
in progressively making the photon beam evaporate in the
transverse r⊥ = (x, y) directions.

This can be obtained by introducing a time-dependent
trapping potential U(r⊥, τ) �= 0 into the Hamiltonian (1),
for instance of truncated harmonic form U(r⊥, τ) =
1
2m⊥ω2

⊥r2
⊥ for |r⊥| � R(τ) and U(r⊥, τ) = 1

2m⊥ω2
⊥R2(τ)

for |r⊥| > R(τ), where the radius R(τ) is a decreasing
function of the propagation time τ . Based on the relation
n1(r⊥, z) = −cβ1/(�ω)U(r⊥, τ) between the spatial pro-
file of the refractive index and the effective potential in
eq. (1), this truncated harmonic trap may be realized by
means of a conically tapered multimode optical waveguide,
as pictorially sketched in fig. 1. The core [|r⊥| � R(β1z)]
is taken to have an inverse-parabolic refractive-index pro-
file, while the cladding [|r⊥| > R(β1z)] is homogeneous
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Tapered optical waveguide

R(τ)
x

y

τ = β1 z

Light beam Exit face

x

y

τ

Fig. 1: (Color online) Sketch of an optical platform allowing
the evaporative cooling of a quantum fluid of light (red) to tem-
peratures below the critical temperature for BE condensation.
The core (light gray) of radius R(τ ) and the cladding (dark
gray) of the waveguide are designed so that the photons are
trapped in an effective harmonic potential (thick gray curves)
whose maximum amplitude ∝ R2(τ ) diminishes as the propa-
gation time τ increases. This removes the high-energy photons
from the fluid of light, which then cools down.

with a refractive index smoothly connecting the one of
the core’s edge.

As a result of this tapering, the maximum value of the
trapping potential decreases as τ increases, so that the
large-momentum (or large-energy) tails of the photon dis-
tribution are progressively removed. At the same time,
the remaining photons keep reequilibrating to lower and
lower temperatures under the effect of collisions, until the
fluid of light eventually crosses the critical temperature for
BE condensation.

Upon the t ←→ z mapping, BE condensation from an
initially thermal photon gas corresponds to the appear-
ance of spontaneous optical coherence when an initially
incoherent beam of light is injected into the nonlinear
medium: the long-range order of the BE condensate of
light reflects into optical coherence extending for macro-
scopically long times t and distances x, y. In contrast
to trivial angular- and frequency-filtering processes, a key
element of our proposal are the collisions between the pho-
tons, that allow the fluid of light to reestablish thermal
equilibrium at lower and lower temperatures while the
most energetic photons keep being removed.

Conclusion. – In this letter, we have investigated the
relaxation dynamics of a paraxial, quasimonochromatic
beam of quantum light towards thermal equilibrium in a
lossless bulk Kerr medium. Following ref. [7], the propa-
gation of the quantum light field has been mapped onto
a quantum nonlinear Schrödinger evolution of a conser-
vative quantum fluid of many interacting bosons. Corre-
spondingly, in the weak-interaction regime, the evolution
of the momentum distribution from an arbitrary nonther-
mal state towards a thermal state with a BE form can be
modeled by the Boltzmann kinetic equation, which offers
analytical formulas for the thermalization time and for the
final temperature and chemical potential in terms of the
parameters of the input beam and of the medium.

In addition to extending the concept of classical-light-
wave condensation [8] to a fully quantum level and solving
well-known ultraviolet pathologies of existing classical the-
ories, our results suggest an intriguing long-term applica-
tion as a novel source of coherent light: taking inspiration

from related advances in atom-laser devices [20–23], we
have pointed out a novel in-waveguide evaporative-cooling
scheme to obtain spontaneous macroscopic optical coher-
ence from an initially incoherent beam of light. As our
proposal does not rely on population-inverted atomic tran-
sitions, it holds the promise of being implemented in an
arbitrary domain of the electromagnetic spectrum.
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